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1. Introduction

A deadzone as shown in Fig. 1(a) is one of the common non-smooth non-linear characteristics
of physical components of control systems including hydraulic servo-valves and electric
servomotors. Deadzones are usually poorly known and may vary with time. They often severely
limit system performance, giving rise to undesirable inaccuracy or oscillations or even leading to
instability.
Direct and indirect control methods have been used in continuous-time or discrete-time systems

with a deadzone [1–3]. Adaptive non-linear control with a deadzone inverse as shown in Fig. 1(b)
is a relatively recent method [4–6]. More recently, fuzzy logic control and neural networks are also
introduced into the control design [7,8]. The deadzone inverse is attractive because it completely
eliminates the non-linear effect of the deadzone. A disadvantage of this approach is the
requirement of a jump in the control as indicated in Fig. 1(b). This requires an infinite rate of the
control and is practically unrealizable when the control is mechanical such as a hydraulic
actuator. In this paper, we present a sliding mode control explicitly accounting for the hardward
constraint of mechanical actuators with a deadzone, resulting in a continuous control. It should
be noted that there have been many studies of sliding controls. A good reference to start with is
Ref. [9].
The paper is organized as follows. In Section 2, we present the control for a first order system

with deadzone. In Section 3, we extend the study to higher order systems. Section 4 presents
numerical simulations of the control and discusses the control performance as a function of
system parameters.
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2. A first order system example

The deadzone is a piecewise linear function given by

wðtÞ ¼

m½uðtÞ � b�; uXb;

0; �bouob;

m½uðtÞ þ b�; �bpu;

8><
>: ð1Þ

where u is the input command, w is the actual output of the actuator, m is the slope and b is the
width of the deadzone. We first consider a stable first order system. The equation of motion of the
system is given by

’x ¼ �ax þ w; ð2Þ

where a > 0: Let xd be a desired trajectory for x: The sliding function of the system is given by
s ¼ x � xd : Following the standard steps of sliding mode control, and by considering the
Lyapunov function J ¼ 1

2
s2; we obtain a nominal sliding mode control in terms of w when the

deadzone is not in the loop:

wn ¼ ax þ ’xd � Z sgnðsÞ; ð3Þ

where Z > 0: With a proper consideration of the boundary layer of the sliding surface, we can
change the switching term sgnðsÞ to a saturation function [9]. For the sake of space, we shall only
present the control in terms of the switching function sgnðsÞ in this paper.
We then put the deadzone in the loop, and derive the control in terms of u:

uðtÞ ¼

wnðtÞ=m þ b; wnðtÞ > 0;

½�b; b�; wnðtÞ ¼ 0;

wnðtÞ=m � b; wnðtÞo0:

8><
>: ð4Þ

This control requires u to jump from �b to b when wn changes sign. When�bouob; the control
output w is zero, and there is no influence of the control on the system dynamics. As a result, the
tracking of the system response to xd will be poor during this period of time. Nevertheless, one can
easily show that the closed-loop system is stable as long as the open loop is stable.
Next, we modify the sliding mode control in such a way that uðtÞ is a continuous function of

time, and it will travel through the deadzone at its maximum speed ’um provided by the hardware.
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Fig. 1. (a) The symmetric deadzone function; (b) the inverse of the symmetric deadzone function.
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We propose the following control:

uðtÞ ¼

wnðtÞ=m þ b; wnðtÞ > e or 0ownðtÞoe and ’wnðtÞ > 0;

sgnð ’wnðtÞÞ ’um � ðt � t0Þ þ uðtþÞ; 0ownðtÞpe and ’wnðtÞo0 and t > tþ;

sgnð ’wnðtÞÞ ’um � ðt � t0Þ þ uðt0Þ; wnðtÞ ¼ 0 and t > t0;

sgnð ’wnðtÞÞ ’um � ðt � t0Þ þ uðt�Þ; �epwnðtÞo0 and ’wnðtÞ > 0 and t > t�;

wnðtÞ=m � b; wnðtÞo� e or � eownðtÞo0 and ’wnðtÞo0:

8>>>>>><
>>>>>>:

ð5Þ

Here, e > 0 is a small number defining a boundary layer of the deadzone. tþ is the time instant
when wnðtþÞ ¼ e entering the boundary layer from the positive side. t� is the time instant when
wnðt�Þ ¼ �e entering the boundary layer from the negative side. t0 is the time instant when
wnðt0Þ ¼ 0 entering the boundary layer from either side.
Note that in this control, the sign of the time derivative ’wnðtÞ is needed. In real-time

implementation, only the sign of the increment of wnðtÞ needs to be tracked. No differentiation is
ever done.

2.1. Stability

We now consider the stability of the proposed control. In the top and bottom branches of the
control in Eq. (5), the reaching condition ’J ¼ s’so0 is still satisfied and hence the system is stable.
In the middle branch where wnðtÞ ¼ 0 and �bpsgnð ’wnðtÞÞ ’um � ðt � t0Þ þ uðt0Þpb; the system is
stable by assumption. We only need to demonstrate the stability of the second and fourth
branches. The system will actually stay in these two branches for a very short period of time.
Note that in these two branches, we have 0ojwnðtÞjoe: From the equation of motion, we have

x ’xp� ax2 þ ejxj: ð6Þ

Consider an auxiliary system with x ’x ¼ �ax2 þ ejxj and a Lyapunov function for this system,
V ðxÞ ¼ 1

2
ðjxj � dÞ2; where d ¼ e=a: One can readily show that VðxÞ ¼ 0 at jxj ¼ d and ’VðxÞp0 in

the whole domain of x: The invariant set of the auxiliary system is x ¼ 7d: Hence, the auxiliary
system is stable. Since the original system is bounded above by the auxiliary system, it is also
bounded and stable in the Lyapunov sense.

2.2. Robust control

Assume that the deadzone parameters b and m are not known precisely, and that the range of
these two parameters are known: bA½b1; b2�; mA½m1;m2�: Following Ref. [9], we propose a robust
control as

u ¼

wnðtÞ= #m þ b2; wnðtÞ > e or 0ownðtÞoe and ’wnðtÞ > 0;

sgnð ’wnðtÞÞ ’um � ðt � t0Þ þ uðtþÞ; 0ownðtÞpe and ’wnðtÞo0 and t > tþ;

sgnð ’wnðtÞÞ ’um � ðt � t0Þ þ uðt0Þ; wnðtÞ ¼ 0 and t > t0;

sgnð ’wnðtÞÞ ’um � ðt � t0Þ þ uðt�Þ; �epwnðtÞo0 and ’wnðtÞ > 0 and t > t�;

wnðtÞ= #m � b2; wnðtÞo� e or � eownðtÞo0 and ’wnðtÞo0;

8>>>>>><
>>>>>>:

ð7Þ
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where

ZXb½m2ðb2 � b1Þ þmaxðb� 1; 1� b�1Þjwnj�; ð8Þ

#m ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
m1m2

p
; b�1 ¼

m1

m2

� �1=2
p

m

#m
p

m2

m1

� �1=2
¼ b: ð9Þ

The stability proof for the control far away from the deadzone follows the standard steps as
outlined in Ref. [9]. For the branches where jwnðtÞjoe; the proof steps are similar to the nominal
case discussed above. We omit the detailed discussions of stability here for the sake of space.

3. Higher order systems

The control method presented above is also applicable to higher order systems. Here, we choose
a stable second order system to demonstrate the application:

.x þ a1 ’x þ a2x ¼ c1 ’w þ c2w: ð10Þ

The sliding surface is defined as

s ¼
d

dt
þ l

� �
*x; *x ¼ x � xd ; l > 0: ð11Þ

By considering the Lyapunov function J ¼ 1
2
s2; we can derive the nominal control:

wnðtÞ ¼ HðtÞ#fa1 ’xðtÞ þ a2xðtÞ þ .xdðtÞ � l½ ’xðtÞ � ’xdðtÞ� � Z sgnðsÞg; ð12Þ

where HðtÞ ¼ L�1ð1=ðc1p þ c2ÞÞ is the inverse Laplace transformation of the transfer function, p
is the Laplace transform variable, and# denotes the convolution integral in time domain. Note
that this representation of wnðtÞ is convenient for proof of stability, not necessarily for
implementation.
We then put the deadzone in the loop, and arrive at the control in terms of uðtÞ having the same

form as in Eq. (5). By assuming that the range of the deadzone parameters are known, and
following the same steps as used before, we can derive a robust control having the same form as in
Eq. (7).
The proof of stability of the controls for the second order system follows the same steps as for

the first order system, and is omitted herein.

4. Numerical simulations

We have conducted extensive simulations to study the effectiveness of the controls. We present
and discuss the numerical results in this section.

4.1. First order system

For the first order system, we have taken a ¼ 0:5; b ¼ 1; m ¼ 2; b1 ¼ 0:8; b2 ¼ 1:2; m1 ¼ 1:5;
m2 ¼ 2:5; #m ¼ 1:8; and e ¼ 0:5: We have replaced the switching function sgnðsÞ to a saturation
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function sat ðs=fÞ with f ¼ 0:1 to avoid chattering in all the simulations. Fig. 2 shows the
response of the system tracking a harmonic signal. Fig. 3 shows the step response of the system.

4.2. Second order system

For the second order system, we have taken a1 ¼ 8; a2 ¼ 20; c1 ¼ 0:1; c2 ¼ 1 and l ¼ 5 while all
other parameters related to the deadzone and the hardware limit are the same as for the first order
system. Fig. 4 shows the response of the system tracking a harmonic signal. Fig. 5 shows the step
function.

4.3. Discussion

We have done more simulations to study the effect of various parameters. Here is a brief
summary of this study. It should be noted that the present control is not intended to stabilize a
unstable system because the control has no output in the deadzone. This is a topic for future
research. In general, the system with deadzone cannot provide perfect tracking. This is a
manifesto of the rate limitation of the hardware. The present study provides a way to evaluate the
hardware limitation in terms of the transient and steady state tracking performance. We have also
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Fig. 3. Step response of the first order system with deadzone; ’um ¼ 100: Solid line is the closed-loop system response,
dashed line is the step reference xd :
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Fig. 2. Tracking performance of the first order system with a deadzone: xd ¼ sin 5t; ’um ¼ 100: Solid line is the closed-
loop system response, dashed line is the reference xd :
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imposed the same hardware rate limit away from the deadzone in the simulation. It has been
found that when the rate saturation limit ’um is larger, the system tracks the reference much better.
We have also studied the effect of the boundary value e: Generally, with a smaller e; the system

also tracks the reference better.
Another factor that limits the control performance is the knowledge of the unknown

parameters. A narrower range of the uncertainty of these parameters will reduce the control
magnitude for a given level of tracking performance. This is a well-known point in the robust
sliding mode control.

5. Concluding remarks

A deadzone is one of non-smooth non-linear elements that exist in many real applications. In
this paper, we have presented a continuous sliding mode control of such a non-linear dynamic
system with a consideration of the hardware limit. A robust control has also been developed
assuming that the bounds of the deadzone parameters are given. Stability of the control has also
been proven. Simulations have been conducted to study the effectiveness of the control in tracking
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Fig. 5. Step response of the second order system with deadzone; ’um ¼ 100: Solid line is the closed-loop system response,
dashed line is the step reference xd :
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Fig. 4. Tracking performance of the second order system with deadzone: xd ¼ sin 5t; ’um ¼ 100: Solid line is the closed-
loop system response, dashed line is the reference xd :
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applications. A comprehensive study of the effects of various parameters on the system
performance is not presented in this paper, and will be pursued in the future.
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